IPv4 vs. IPv6

herta.belegu.uni-linz, 16. Juni 2013, 16:57

IPv4 vs. Ipv6



-IPv4

IPv4 (Internet Protocol Version 4), vor der Entwicklung von IPv6 einfach IP, ist die vierte Version des Internet Protocols (IP). Es war die erste Version des Internet Protocols, welche weltweit verbreitet und eingesetzt wurde, und bildet eine wichtige technische Grundlage des Internets. Es wurde in RFC 791 im Jahr 1981 definiert.



IPv4 benutzt 32-Bit-Adressen, daher sind maximal 4.294.967.296 eindeutige Adressen möglich. IPv4-Adressen werden üblicherweise dezimal in vier Blöcken geschrieben, zum Beispiel 207.142.131.235. Je Block werden 8 Bit zusammengefasst; somit ergibt sich für jeden Block ein Wertebereich von 0 bis 255. Bei der Weiterentwicklung IPv6 werden 128-Bit-Adressen verwendet.

Eine IP-Adresse unterteilt sich in einen Netzwerkteil und einen Host-(Adressen-)teil. Rechner sind im selben IP-Netz, wenn der Netzwerkteil ihrer Adresse gleich ist – das ist eine Voraussetzung, dass diese Rechner direkt miteinander kommunizieren können, also z. B. über einen Hub, einen Switch oder mittels eines Crosslink-Kabels. Im selben Netz darf keine Host-Adresse doppelt vergeben sein.

Für die Kommunikation zwischen unterschiedlichen Netzen wird ein Router benötigt. Den Adressteil vergibt der zuständige Administrator für jedes teilnehmende Gerät unterschiedlich. Die Netzadresse vergibt der Besitzer oder Planer des Netzwerks. Im Internet ist das IANA (Internet Assigned Numbers Authority) für die Vergabe der Netzadressen zuständig.

Die genaue Aufteilung zwischen Netzwerkteil und Adressteil wird durch die Subnetzmaske bestimmt (zum Beispiel 255.255.255.0). In der CIDR-Notation wird dies als 192.168.0.23/24 geschrieben, wobei die „24“ bedeutet, dass die ersten 24 Bits der Subnetzmaske gleich 1 sind. Die Bits der Subnetzmaske, die (in binärer Schreibweise) „1“ sind, legen die Stellen der IP-Adresse fest, die zum Netzanteil gehören.



Ein IP-Paket besteht aus einem Header und den eigentlichen Daten. Der Datenteil enthält in der Regel ein weiteres Protokoll, meist TCP, UDP oder ICMP. Die maximale Länge eines IP-Pakets beträgt 65535 Bytes (216−1), die maximale Datenlänge 65515 Bytes (Paketlänge – minimale Headerlänge von 20 Byte). Normalerweise beschränkt der Sender die Paketlänge auf diejenige des zugrundeliegenden Mediums. Bei Ethernet beträgt die sogenannte MTU (Maximum Transmission Unit) 1500 Bytes, da ein Ethernet-Datenblock maximal 1518 Bytes lang sein darf und 18 Bytes vom Ethernet selbst belegt werden. Für IP (Header und Daten) stehen also nur 1500 Bytes zur Verfügung. Deshalb ist die Länge von IP-Paketen oft auf 1500 Bytes festgesetzt.



Routing

IPv4 unterscheidet nicht zwischen Endgeräten (Hosts) und Vermittlungsgeräten (Router). Jeder Computer und jedes Gerät kann gleichzeitig Endpunkt und Router sein. Ein Router verbindet dabei verschiedene Netzwerke. Die Gesamtheit aller über Router verbundenen Netzwerke bildet das Internet (siehe auch Internetworking).

IPv4 ist für LANs und WANs gleichermaßen geeignet. Ein Paket kann verschiedene Netzwerke vom Sender zum Empfänger durchlaufen, die Netzwerke sind durch Router verbunden. Anhand von Routingtabellen, die jeder Router individuell pflegt, wird der Netzwerkteil einem Zielnetzwerk zugeordnet. Die Einträge in die Routingtabelle können dabei statisch oder über Routingprotokolle dynamisch erfolgen. Die Routingprotokolle dürfen dabei sogar auf IP aufsetzen.

Bei Überlastung eines Netzwerks oder einem anderen Fehler darf ein Router Pakete auch verwerfen. Pakete desselben Senders können bei Ausfall eines Netzwerks auch alternativ „geroutet“ werden. Jedes Paket wird dabei einzeln „geroutet“, was zu einer erhöhten Ausfallsicherheit führt.

Beim Routing über IP können daher

einzelne Pakete verlorengehen,

Pakete doppelt beim Empfänger ankommen,

Pakete verschiedene Wege nehmen,

Pakete fragmentiert beim Empfänger ankommen.

Wird TCP auf IP aufgesetzt (d. h. die Daten jedes IP-Pakets enthalten ein TCP-Paket, aufgeteilt in TCP-Header und Daten), so wird neben dem Aufheben der Längenbeschränkung auch der Paketverlust durch Wiederholung korrigiert. Doppelte Pakete werden erkannt und verworfen. Die Kombination TCP mit IP stellt dabei eine zuverlässige bidirektionale Verbindung eines Datenstroms dar.





Internet Control Message Protocol

IP ist eng verknüpft mit dem Internet Control Message Protocol (ICMP), das zur Fehlersuche und Steuerung eingesetzt wird. ICMP setzt auf IP auf, das heißt ein ICMP-Paket wird im Datenteil eines IP-Pakets abgelegt. Eine IP-Implementierung enthält stets auch eine ICMP Implementierung. Wichtig ist zum Beispiel die ICMP Source-Quench-Mitteilung, die den Sender über das Verwerfen von Paketen wegen Überlastung eines Routers informiert. Da jedes IP-Paket die Quell-Adresse enthält, können Informationen an den Sender zurückübermittelt werden. Dieser kann nach einem „Source-Quench“ die Paketsendefrequenz verringern und so die Notwendigkeit eines weiteren Verwerfens minimieren oder vermeiden.

ICMP kann zusammen mit dem Don’t-Fragment-Bit des IP-Pakets auch eingesetzt werden, um die maximale Paketgröße MTU eines Übertragungsweges zu ermitteln (sogenannte PMTU Path Maximum Transmission Unit). Dies ist die MTU desjenigen Netzwerkes mit der kleinsten MTU aller passierten Netzwerke. Dadurch kann auf Fragmentierung verzichtet werden, wenn der Sender nur Pakete mit der maximalen Größe der PMTU erzeugt.



IPv4 kann auf vielen verschiedenen Medien aufsetzen, zum Beispiel auf serielle Schnittstellen (PPP oder SLIP), Satellitenverbindungen usw. Im LAN-Bereich wird heute fast immer Ethernet eingesetzt. Ethernet verwaltet eigene 48-Bit-Adressen. Wenn IP über Ethernet gesendet wird, wird ein 14 (oder bei VLAN 18) Byte großer Ethernet-Header vor dem IP-Header gesendet. Nach den Daten folgt eine 32-Bit-CRC-Prüfsumme. Neben der maximalen Paketlänge von 1522 (bzw. 1518) Bytes kann Ethernet keine kleineren Pakete als 64 Bytes übertragen, so dass zu kurze IP-Pakete (Datenlänge kleiner als 46 Bytes) mit Nullbytes erweitert werden (sogenanntes Padding). Die Länge im IP-Header gibt dann Auskunft über die tatsächliche Paketgröße.

Im Ethernet hat jede Netzwerkkarte ihre eigene, herstellerbezogene 48-Bit-Adresse, zusätzlich gibt es eine Ethernet-Broadcastadresse. Ein Sender muss die Ethernetadresse der Zielnetzwerkkarte kennen, bevor ein IP-Paket gesendet werden kann. Dazu wird ARP (Address Resolution Protocol) verwendet. Jeder Rechner verwaltet einen ARP-Cache, in dem er ihm bekannte Zuordnungen von Ethernet-Kartenadressen speichert. Unbekannte Adressen erfährt er über ARP mittels einer Anfrage (ARP-Request) über einen Ethernet-Broadcast (Nachricht an alle Empfänger), die der zugehörige Empfänger beantwortet (ARP-Reply).



IPv4 hat lange nahezu unverändert überlebt. Ab 1983 wurde die IP-Protokoll-Familie als einzige Protokollfamilie für das Arpanet übernommen, das dann später zum Internet wurde. Damals waren nur einige hundert Rechner an das Netz angeschlossen. 1989 wurde die Grenze von 100.000 Rechnern überschritten, und im selben Jahr der Backbone auf 1,5 MBit/s aufgerüstet. Am Anfang der 1990er-Jahre war erkennbar, dass die IP-Adressen bald knapp würden. Dies führte zuerst zur Entwicklung eines Entwurfes für einen Standard mit der Versionsnummer 7 (TP/IX), der dann aber zugunsten von IPv6 verworfen wurde. TP/IX sollte dabei einen 64-Bit-Adressbereich unterstützen. Die Versionsnummer 5 wurde 1995 für das Internet Stream Protocol Version 2 (ST2) benutzt, das nicht als IPv4-Nachfolger geplant war, sondern als gleichzeitig benutzbares, für Streaming optimiertes Protokoll. Mittlerweile ist das Projekt jedoch eingestellt. Einige Eigenschaften, wie Fragmentierung, werden nicht mehr benötigt, da sie für die heutigen schnellen Netze zu aufwändig sind. Path Maximum Transmission Unit Discovery löst dieses Problem. IPv4 scheint auch in nächster Zukunft noch das allgemein verwendete Protokoll im Internet zu bleiben. Schließlich hat IP auch die konkurrierenden LAN-Protokolle wie DECnet verdrängt. NetWare, AppleTalk und NetBIOS wurden als neue Versionen hervorgebracht, die auf IP aufsetzen.

Am 3. Februar 2011 vergab die IANA die letzten IPv4-Adressen an die Regional Internet Registries. Am 15. April 2011 teilte APNIC die letzten frei zu vergebenden Adressen für die Region Südostasien zu.Ab diesem Zeitpunkt haben alle APNIC-Mitglieder nur noch Anspruch auf eine einzelne Zuteilung von IPv4-Adressraum der minimalen Zuteilungsgröße.





Ipv6:

Das Internet Protocol Version 6 (IPv6), früher auch Internet Protocol next Generation (IPnG) genannt, ist ein von der Internet Engineering Task Force (IETF) seit 1998 standardisiertes Verfahren zur Übertragung von Daten in paketvermittelndenRechnernetzen, insbesondere dem Internet. In diesen Netzen werden die Daten in Paketen versendet, in welchen nach einem Schichtenmodell Steuerinformationen verschiedener Netzwerkprotokolle ineinander verschachtelt um die eigentlichen Nutzdaten herum übertragen werden. IPv6 stellt als Protokoll der Vermittlungsschicht (Schicht 3 des OSI-Modells) im Rahmen der Internetprotokollfamilie eine über Teilnetze hinweg gültige Adressierung der beteiligten Netzwerkelemente (Rechner oder Router) her. Ferner regelt es unter Verwendung dieser Adressen den Vorgang der Paketweiterleitung zwischen Teilnetzen (Routing). Die Teilnetze können so mit verschiedenen Protokollen unterer Schichten betrieben werden, die deren unterschiedlichen physikalischen und administrativen Gegebenheiten Rechnung tragen.

Im Internet soll IPv6 in den nächsten Jahren die gegenwärtig noch überwiegend genutzte Version 4 des Internet Protocols ablösen, da es eine deutlich größere Zahl möglicher Adressen bietet, die bei IPv4 zu erschöpfen drohen. Kritiker befürchten ein Zurückdrängen der Anonymität im Internet durch die nun mögliche zeitlich stabilere und weiter reichende öffentliche Adressierung.Befürworter bemängeln die zögerliche Einführung von IPv6 angesichts der ausgelaufenen IPv4-Adressvergabe in Asien, Ozeanien und Europa.



IPv4 bietet einen Adressraum von etwas über vier Milliarden IP-Adressen (232 = 2564 = 4.294.967.296), von denen 3.707.764.736 verwendet werden können, um Computer und andere Geräte direkt anzusprechen.In den Anfangstagen des Internets, als es nur wenige Rechner gab, die eine IP-Adresse brauchten, galt dies als weit mehr als ausreichend. Aufgrund des unvorhergesehenen Wachstums des Internets herrscht heute aber Adressenknappheit. Im Januar 2011 teilte die IANA der asiatischen Regional Internet RegistryAPNIC die letzten zwei frei zu vergebenden Netze zu. Gemäß einer Vereinbarung aus dem Jahr 2009 wurde am 3. Februar 2011 schließlich der verbleibende Adressraum gleichmäßig auf die regionalen Adressvergabestellen verteilt.Darüber hinaus steht den regionalen Adressvergabestellen kein weiterer IPv4-Adressraum mehr zur Verfügung. Am 15. April 2011 teilte APNIC die letzten frei zu vergebenden Adressen für die Region Südostasien zu; am 14. September 2012 folgte dann RIPE NCC mit der letzten freien Zuteilung in der Region Europa/Naher Osten.Seitdem haben APNIC- und RIPE NCC-Mitglieder jeweils nur noch Anspruch auf eine einzelne Zuteilung von IPv4-Adressraum der minimalen Zuteilungsgröße.

Die historische Entwicklung des Internets wirft ein weiteres Problem auf: Durch die mit der Zeit mehrmals geänderte Vergabepraxis von Adressen des IPv4-Adressraums ist dieser inzwischen stark fragmentiert, d. h., häufig gehören mehrere nicht zusammenhängende Adressbereiche zur gleichen organisatorischen Instanz. Dies führt in Verbindung mit der heutigen Routingstrategie (Classless Inter-Domain Routing) zu langen Routingtabellen, auf welche Speicher und Prozessoren der Router im Kernbereich des Internets ausgelegt werden müssen. Zudem erfordert IPv4 von Routern, Prüfsummen jedes weitergeleiteten Pakets neu zu berechnen, was eine weitere Prozessorbelastung darstellt.

Aus diesen Gründen begann die IETF bereits 1995 die Arbeiten an IPv6. Im Dezember 1998 wurde IPv6 mit der Publikation von RFC 2460 auf dem Standards Track offiziell zum Nachfolger von IPv4 gekürt.

Die wesentlichen neuen Eigenschaften von IPv6 umfassen:

Vergrößerung des Adressraums von IPv4 mit 232 (≈ 4,3 Milliarden = 4,3·109)

Adressen auf 2128(≈ 340 Sextillionen = 3,4·1038) Adressen bei IPv6, d. h.

Vergrößerung um den Faktor 296 (≈7,9·1028).

Vereinfachung und Verbesserung des Protokollrahmens (Kopfdaten); dies entlastet

Router von Rechenaufwand.

zustandsloseautomatische Konfiguration von IPv6-Adressen; zustandsbehaftete

Verfahren wie DHCP werden beim Einsatz von IPv6 damit in vielen

Anwendungsfällen überflüssigMobile IP sowie Vereinfachung vonUmnummerierung

und MultihomingImplementierung von IPsec innerhalb des Ipv6-Standards.

Dadurch wird die Verschlüsselung und die Überprüfung der Authentizität von IP-

Paketen ermöglicht.

Unterstützung von Netztechniken wie Quality of Service und Multicast

Die hauptsächliche Motivation zur Vergrößerung des Adressraums besteht in der Wahrung des Ende-zu-Ende-Prinzips, das ein zentrales Designprinzip des Internets ist:Nur die Endknoten des Netzes sollen aktive Protokolloperationen ausführen, das Netz zwischen den Endknoten ist nur für die Weiterleitung der Datenpakete zuständig. (Das Internet unterscheidet sich hier wesentlich von anderen digitalen Datenübertragungsnetzwerken wie z. B. GSM.) Dazu ist es notwendig, dass jeder Netzknoten global eindeutig adressierbar ist.[13]

Heute übliche Verfahren wie Network Address Translation (NAT), welche derzeit die IPv4-Adressknappheit umgehen, verletzen das Ende-zu-Ende-Prinzip.Sie ermöglichen den so angebundenen Rechnern nur ausgehende Verbindungen aufzubauen. Aus dem Internet können diese hingegen nicht ohne weiteres kontaktiert werden. Auch verlassen sich IPsec oder Protokolle auf höheren Schichten wie z. B. FTP und SIP teilweise auf das Ende-zu-Ende-Prinzip und sind mit NAT nur eingeschränkt oder mittels Zusatzlösungen funktionsfähig.Besonders für Heimanwender bedeutet IPv6 damit einen Paradigmenwechsel: Anstatt vom Provider nur eine einzige IP-Adresse zugewiesen zu bekommen und über NAT mehrere Geräte ans Internet anzubinden, bekommt der Anwender global eindeutigen IP-Adressraum für ein ganzes Teilnetz zur Verfügung gestellt, so dass jedes seiner Geräte eine IP-Adresse aus diesem erhalten kann. Damit wird es für Endbenutzer einfacher, durch das Anbieten von Diensten aktiv am Netz teilzunehmen. Zudem entfallen die Probleme, die bei NAT durch die Adressumschreibung entstehen.

Bei der Wahl der Adresslänge und damit der Größe des zur Verfügung stehenden Adressraums waren mehrere Faktoren zu berücksichtigen. Zum einen müssen pro Datenpaket auch Quell- und Ziel-IP-Adresse übertragen werden. Längere IP-Adressen führen damit zu erhöhtem Protokoll-Overhead, d. h. das Verhältnis zwischen tatsächlichen Nutzdaten und der zur Vermittlung notwendigen Protokolldaten sinkt.Auf der anderen Seite sollte dem zukünftigen Wachstum des Internets Rechnung getragen werden. Zudem sollte es zur Verhinderung der Fragmentierung des Adressraums möglich sein, einer Organisation nur ein einziges Mal Adressraum zuweisen zu müssen. Um den Prozess der Autokonfiguration sowie Umnummerierung und Multihoming zu vereinfachen, war es außerdem wünschenswert, einen festen Teil der Adresse zur netzunabhängigen eindeutigen Identifikation eines Netzknotens zu reservieren. Die letzten 64 Bit der Adresse bestehen daher in der Regel aus der EUI-64 der Netzwerkschnittstelle des Knotens.



IPv6-Adressen sind 128 Bit lang (IPv4: 32 Bit). Die letzten 64 Bit bilden bis auf Sonderfälle einen für die Netzwerkschnittstelle (engl. Interface) eindeutigen Interface Identifier. Eine Netzwerkschnittstelle kann unter mehreren IP-Adressen erreichbar sein; in der Regel ist sie dies mittels ihrer link-lokalen Adresse und einer global eindeutigen Adresse. Derselbe Interface Identifier kann damit Teil mehrerer IPv6-Adressen sein, welche mit verschiedenen Präfixen auf dieselbe Netzwerkkarte gebunden sind. Insbesondere gilt dies auch für Präfixe möglicherweise verschiedener Provider; dies vereinfacht Multihoming-Verfahren.

Da die Erzeugung des Interface Identifiers aus der global eindeutigen MAC-Adresse die Nachverfolgung von Benutzern ermöglicht, wurden die Privacy Extensions (RFC 4941) entwickelt, um diese permanente Kopplung der Benutzeridentität an die IPv6-Adressen aufzuheben. Indem der Interface Identifier zufällig generiert wird und regelmäßig wechselt, soll ein Teil der Anonymität von IPv4 wiederhergestellt werden.

Da im Privatbereich in der IPv6-Adresse aber sowohl der Interface Identifier als auch das Präfix allein recht sicher auf einen Nutzer schließen lassen können, ist aus Datenschutzgründen in Verbindung mit den Privacy Extensions ein vom Provider dynamisch zugewiesenes, z. B. täglich wechselndes, Präfix wünschenswert. (Mit einer statischen Adresszuteilung geht in der Regel insbesondere ein Eintrag in der öffentlichen Whois-Datenbank einher.) Dabei ist es wie oben beschrieben grundsätzlich möglich, auf derselben Netzwerkkarte sowohl IPv6-Adressen aus dynamischen als auch aus fest zugewiesenen Präfixen parallel zu verwenden. In Deutschland hat der Deutsche IPv6-Rat Datenschutzleitlinien formuliert, die auch eine dynamische Zuweisung von IPv6-Präfixen vorsehen.





IPv6 setzt sich im praktischen Einsatz nur langsam durch. Die Adressvergabe für IPv6 ist im Juli 1999 vom experimentellen in den Regelbetrieb übergegangenund immer mehr ISPs betreiben neben IPv4 auch IPv6 in ihrem Netz, dieses aber zumeist nur testweise und entweder ohne entsprechende Produkte oder ohne Verfügbarkeitsgarantien für ihre Kunden. Somit werden vollwertige IPv6-Anbindungen im Dual-Stack-Verfahren fast nur von kleineren Providern angeboten, so dass man im Moment auf Tunnel zurückgreifen muss. Die globale IPv6-Routingtabelle umfasste im Juni 2011 etwa 6000 Präfixeund ungefähr 11 % aller im Internet verfügbaren Autonomen Systeme beteiligen sich am globalen IPv6-Routing.Die meisten der großen Austauschpunkte für Internetverkehr erlauben und fördern neben IPv4 auch den Austausch von IPv6 über ihre Infrastruktur. Beim DE-CIX nutzten im April 2008 etwa 70 bis 80 von insgesamt 240 Providern IPv6. Über den Internetknoten AMS-IX werden zu Spitzenzeiten 4,5 GBit/s IPv6-Traffic transportiert(das sind etwas über 0,36 % des dort anfallenden Gesamtverkehrs (etwa 1,25 TBit/s)); am DE-CIX liegt das Aufkommen bei bis zu 4,5 GBit/s (0,29 % des Gesamtverkehrs von etwa 1,55 TBit/s)

Das IPv6 Forumwurde im Juli 1999, der Deutsche IPv6 Rat im Dezember 2007 gegründet. Das IPv6 Forum Projekt Ipv6-Readyvergibt das IPv6-Logo in drei verschiedenen Stufen, die die Implementierung des Protokolls messen. Die Webseite listet dazu auch alle IPv6-fähigen Betriebssysteme auf.

Derzeit sind 74 % aller IPv4-Adressen den nordamerikanischen Internet Registries und einigen US-amerikanischen Institutionen und Unternehmen direkt zugewiesen, während beispielsweise ganz China – mit inzwischen über 250 Millionen Internet-Benutzern (Stand: Juni 2008) – vor Jahren noch nur über etwa so viele IP-Adressen verfügte wie ein Campus der University of California (Dezember 2004). In Asien geht der Trend daher inzwischen dahin, bei Neubauten (zum Beispiel dem insbesondere Japan und die USA verbindenden NTT-Backbone) IPv6 auch zu benutzen. Das Bildungsnetzwerk CERNET2 in China ist derzeit das größte Netzwerk, das ausschließlich mit IPv6 betrieben wird. Es verbindet 25 Universitäten in 20 Städten.

Von Seiten der Endbenutzer wird IPv6 auch deshalb nicht gefordert, weil außer dem größeren Adressbereich die wesentlichen neuen Eigenschaften von IPv6 inzwischen mehr oder weniger erfolgreich nach IPv4 zurückportiert wurden (beispielsweise IPsec, QoS, Multicast; Umnummerierung und Autokonfiguration sind auch mittels DHCP möglich) – es gibt keine weitverbreitete Anwendung, die nur mit IPv6 funktionieren würde.

 

 

Quelle:

-(Wikipedia http://de.wikipedia.org/wiki/IPV6, Zugriff, 16.06.2013)

-(Wikipedia http://de.wikipedia.org/wiki/Ipv4, Zugriff, 16.06.2013)

0 comments :: Kommentieren